
An Exerpt from 
http://kevinclosson.wordpress.com/2009/05/14/you-buy-a-
numa-system-oracle-says-disable-numa-what-gives-part-ii/ 

 

NUMA system fall into one three camps: 
1. Pioneer, Proprietary NUMA Implementations (PPNI). 
2. Modern, Proprietary NUMA Implementations (MPNI). 
3. Commodity NUMA Implementations (CNI). 

 
 
1) Pioneer, Proprietary NUMA Implementations (PPNI). The 
first commercial cache-coherent NUMA system was the Sequent 
NUMAQ-2000. Within a couple of years of that hardware release 
there were several other pioneer implementations brought to 
market by DG, DEC, SGI, Unisys and others. The implementation 
details of these pioneer NUMA systems varied hugely (e.g., 
interconnect technology, levels of OS NUMA awareness, etc). One 
thing these pioneer implementations all shared in common was the 
fact that they suffered huge ratios between local and remote 
memory latency. When I say huge, I’m talking as much as 50 to 1 
for highly contended multiple-hop remote memory. The only 
reason these pioneer systems were brought to market was because 
they offered tremendous advancements in system bandwidth. The 
cost, however, was lumpy memory and thus software NUMA-
awareness was of utmost importance.  I would consider systems 
like the Sun E25K to be “second-generation” pioneer systems. 
Sure, the E25K suffered memory locality costs, but not as badly as 
the true pioneer systems. Few would argue that even the “second-
generation” pioneer systems relied heavily on software NUMA-
awareness.  
 
2) Modern, Proprietary NUMA Implementations (MPNI). I’m 
not going to cite many systems here as cases in point. I don’t aim 



to wound the tender sensibilities of any hardware supplier. I can 
define what I mean by MPNI by simply stating that MPNI systems 
differ from PPNI in terms of remote to local memory latency 
ratios. In short, MPNI systems have very favorable L:R latency 
ratios. By very favorable, I mean significantly less than 2 to 1. An 
example of an MPNI system would be the Sun SPARC Enterprise 
M9000 Server which, according to my good friend Glenn Fawcett 
sports an approximate local to remote latency ratio of 1.3:1. In my 
opinion, it is not worth the complexities necessary to do proper, 
effective software  NUMA awareness when there is only 30% 
disparity between the local and remote memory (at least not Oracle 
NUMA-awareness). Now, having said that, I know the M9000 
supports scaling to multiple cabinets. I don’t know enough about 
the crossbar (Juniper Interconnect) to say whether it requires any 
“hop” overhead in a multiple-cabinet configuration. Sun literature 
states point-to-point without caveats so the L:R ratio might remain 
constant as one adds cabinets. Nonetheless, the point being made 
here is that there exist today modern, proprietary NUMA 
implementations and concerns over Oracle NUMA awareness 
should be weighed according to MPNI capabilities—not arcane, 
PPNI capabilities. 
 
3) Commodity NUMA Implementations (CNI). I don’t feel 
compelled to hide my exuberance for modern NUMA 
implementations such as Intel QuickPath Interconnect and the 
HyperTransport (HT) used by AMD. The points I want to make 
about CNI are as follows: 

• Memory Latency Ratios. While I’ve not stayed as up to 
speed on local-remote ratios with HT 3.0, I know that 
the Intel QPI-based systems offer very pleasant L:R 
ratios (e.g., 1.4:1 or better). More importantly, I should 
point out that even remote memory references in 
Nehalem-based Servers (Xeon 5500) are faster than all 
memory references in the previous generation Xeon-
based systems (e.g., “Harpertown” Xeon 5400)!  



• BIOS-Enabled NUMA. Commodity NUMA systems 
support the concept of boot-time NUMA enablement. 
When booted with NUMA disabled at the BIOS, the 
resultant memory architecture is commonly referred to 
as Sufficiently Uniform Memory Access (SUMA) or 
Sufficiently Uniform Memory Organization (SUMO). 

 


