
SLOB - Silly Little Oracle Benchmark

INDEX
INTRO
NOTE ABOUT SMALL SGA
SETUP STEPS
RELOADING THE TABLES
RESULTS
TERMINOLOGY
HOW MANY PROCESSES DO I RUN
NON-LINUX PLATFORMS

INTRO

This kit does physical I/O. Lot's of it.

The general idea is that schema users connect to the instance and
execute SQL on their own tables and indexes so as to eliminate as
much SGA *application* sharing as possible. SLOB aims to stress Oracle
internal concurrency as opposed to application-contention. It's all about
database physical IO (both physical and logical) not application scaling.

The default kit presumes the existence of a tablespace called IOPS. If
you wish to supply another named tablespace it will be given as a
argument to the setup.sh script. More on this later in this README.

To create the schemas and load data simply execute setup.sh as the Oracle
sysdba user. The setup.sh script takes two arguments the first being the
name of the tablespace and the second being how many schema users to load.
A high-end test setup will generally load 128 users. To that end, 128 is
the default.

To run the test workload use the runit.sh script. It takes two arguments
the first being the number of sessions that will attach and perform modify
DML (UPDATE) on their data (writer.sql) and the second directs how many sessions
will connect and SELECT against their data (reader.sql).

NOTE ABOUT SMALL SGA

The key to this kit is to run with a small SGA buffer pool to force physical
I/O. For instance, a 40MB SGA will be certain to result in significant physical
IOPS when running with about 4 or more reader sessions. Monitor free buffer waits
and increase db_cache_size to ensure the run proceeds without free buffer wait
events.

Oracle SGA sizing heuristics may prevent you from creating a very small SGA
if your system has a lot of processor cores. There are remedies for this.
You can set cpu_count in the parameter file to a small number (e.g., 2) and this
generally allows one to minimize db_block_buffers. Another approach is
to create a recycle buffer pool. The setup.sh script uses the storage
clause of the CREATE TABLE command to associate all SLOB users' tables
with a recycle pool. If there happens to be a recycle pool when the
instance is started then all table traffic will flow through that
pool.

SETUP STEPS

1. First, create the trigger tools. Change directory to ./wait_kit
 and execute "make all"

file:///Users/clossk/Desktop/README-FIRST.txt

1 of 3 5/12/12 9:32 AM

2. Next, execute the setup.sh script, e.g., sh ./setup.sh IOPS 128
3. Next, run the kit such as sh ./runit.sh 0 8

RELOADING THE TABLES

When setup.sh executes it produces a drop_users.sql file. If you need to
re-run setup.sh it is optimal to execute drop_users.sql first and then
proceed to re-execute setup.sh.

RESULTS

The kit will produce a text awr report named awr.txt. The "awr" directory
scripts can be modified to produce a HTML awr report if so desired.

TERMINOLOGY

SLOB is useful for the following I/O and system bandwidth testing:

1. Physical I/O (PIO) - Datafile focus
1.1 This style of SLOB testing requires a small db_block_cache
setting. Small means very small such as 40MB. Some
users find that it is necessary to over-ride Oracle's built
in self-tuning even when supplying a specific value to
db_cache_size. If you set db_cache_size small (e.g., 40M)
but SHOW SGA reveals an over-ride situation, consider
setting cpu_count to a very low value such as 2. This will
not spoil SLOB's ability to stress I/O.
1.2 Some examples of PIO include the following:

$ sh ./runit.sh 0 32 # zero writers 32 readers
$ sh ./runit.sh 32 0 # 32 writers zero readers
$ sh ./runit.sh 16 16 # 16 of each reader/writer

2. Logical I/O (LIO)
2.1 LIO is a system bandwidth and memory latency test. This
requires a larger db_block_cache setting. The idea is to
eliminate Physical I/O. The measurement in this testing mode
is Logical I/O as reported in AWR as Logical reads.

3. Redo Focused (REDO)
3.1 REDO mode also requires a large SGA. The idea is to
have enough buffers so that Oracle does not need to
activate DBWR to flush. Instead, LGWR will be the
only process on the system issuing physical I/O. This
manner of SLOB testing will prove out the maximum theoretical
redo subsystem bandwidth on the system. In this mode
it is best to run with zero readers and all writers.

HOW MANY PROCESSES DO I RUN?

I recommend starting out small and scaling up. So, for instance,
a loop of PIO such as the following:

$ for cnt in 1 2 4 8
do

sh ./runit.sh 0 $cnt
done

Take care to preserve the AWR report in each iteration of the loop.
The best recipe for the number of SLOB sessions is system specific.
If your system renders, say, 50,000 PIOPS with 24 readers but starts
to tail beyond 24 then stay with 24.

file:///Users/clossk/Desktop/README-FIRST.txt

2 of 3 5/12/12 9:32 AM

In general I recommend thinking in terms of SLOB sessions per core.

In the LIO case it is quite rare to run with more readers.sql than the
number of cores (or threads in the case of threaded cores). On the other
hand, in the case of REDO it might take more than the number of cores
to find the maximum redo subsystem throughput--remember, Oracle does
piggy-back commits so over-subscribing sessions to cores might be
beneficial during REDO testing.

NON-LINUX PLATFORMS

The SLOB install directory has of README.{PLATFORM} files and
user-contributed, tested scripts under the ./misc/user-contrib directory.

file:///Users/clossk/Desktop/README-FIRST.txt

3 of 3 5/12/12 9:32 AM

